by Professor James Holden, Ph.D., University of Massachusetts Amherst
June 27, 2010
One of the primary goals of this expedition is to discover and explore new deep-sea hydrothermal vent ecosystems – located in places where seawater is heated deep within the crust near a magma source and then shoots out of the seafloor as jets of fluid up to 400°C (750°F). The question is, “how do you discover these sites (which exist in complete darkness and may fit inside a gymnasium) over the broad expanse of the ocean?”
First, we look at a map of the entire global ocean seafloor that was made using a satellite in space. The resolution of this map is good enough to pick out features like large submarine volcanoes and ocean trenches. Once we find an area of interest, then we can begin looking at that region in more detail.
For this expedition, we chose a region just north of Sulawesi Island in Indonesia along a volcanic line of islands known as the Sangihe arc. Many of these islands have active volcanoes that have erupted within the last 50 years. The satellite map showed that there are volcanoes below the surface on the west side of this arc. In 2001, Indonesian and Australian scientists surveyed these underwater volcanoes and found evidence of hydrothermal activity using instruments lowered from a ship, but they lacked the ability to explore the seafloor with a remotely operated vehicle (ROV) and find the sources of the venting.
We are making a more detailed seafloor map of a 2,400-square-mile area west of the Sangihe arc using a high-precision sonar device on board NOAA Ship Okeanos Explorer – EM302 multibeam sonar. This sonar allows us to see in more detail what the seafloor looks like and identify features of interest, including those that we think are volcanically active.
On this expedition, we are very interested in one particular deep-sea volcano named Kawio Barat. Our mapping has shown that this is a smooth conical volcano that rises more than 3,350 meters (11,000 feet) from a point more than 5,490 meters (18,000 feet) below the surface. The top of this volcano is about 2,130 meters (7,000 feet) below the surface.
The next step is to look for evidence of these super-heated jets of fluid coming out of the volcano. Often these fluids contain a lot of metallic particles that were extracted from the rock. These fluids look a lot like smoke from a fire on land and are called a ‘plume.’ They rise upward a few hundred feet and then drift away horizontally in the direction of the ocean current. We lower an instrument called a CTD rosette over the side of the ship down to the top of these volcanoes to look for very small increases in temperature and particle concentration and small changes in the oxidation-reduction potential as an indication of these hydrothermal plumes. With skill, we can follow the plumes down to their source on the seafloor, which is where we find the interesting life and mineral structures associated with hydrothermal vents. With this information, we can know where to send our ROV to make exciting discoveries!